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ABSTRACT

The Sunblazer radio propagation experiment requires that
a signal, which has been transmitted through the solar corona,
be detected, and its time of arrival estimated as accurately
as possible. A communication scheme which does this optimally
is analyzed in terms of its sensitivity to the dispersive
effect of the coronal plasma. It is shown that receiver per-
formance can be evaluated if the cross-correlation function
of the dispersed and undispersed signal is known. The method
of a Taylor expansion of phase is used to obtain an expression
for this cross-correlation function that is suitable for
machine computation. Three cases are then examined--the
rectangular pulse, and the thf&e- and eleven-bit Barker codes.
In each caseé Fhe cross-correlation and the mean-square estima-
tion error are computed and plotted for different amounts of
’§i§2g£§ion. The "dispersion time" is defined as a measure
of dispersion, and it is seen that signal degradation becomes
severe when this parameter becomes larger than the elementary
pulse width of the signal.
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I. INTRODUCTION

A primary purpose of the Sunblazer solar probe, which is
to be launched in the summer of 1968, is to make measurements
of the electron density of the extended solar corona (Refs.
9, 10). This can be done by transmitting two narrowband
signals from the satellite on two different frequencies.

Each signal will experience a different propagation delay
through the corona due to the frequency-dependent group vel-
ocities, which in turn are functions of the electron density.
The aim, then, is to measure as accurately as possible the
relative arrival times of the received signals.

measurement, it is desiragie to shape our ;ignal such that
it has a peaked auto-correlation function. Barker codes are
useful because they have this property. To detect ﬁhe signal
and estimate its arrival time, the optimum receiver takes
the correlation function of the demodulated received signal
(ideally Barker code plus noise) with another Barker code.
The receiver thus produces the auto-correlation function of
the Barker code, and signal detection and arrival time esti-
mation is accomplished by measuring the height and time-
position of the central peak.

This reception scheme, however, does not take into
account the dispersive effect of the coronal plasma on the

signal. The demodulated received signal will consist not of
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Barker code plus noise, but a dispersed version of the Barker
code plus noise, and the receiver will not calculate the
desired auto-correlation function. The performance of the
receiver will thus be degraded; finding out to what degree

it will be degraded is an objective of this thesis.

An investigation of this dispersion problem had already
been begun by Gordon R. Gilbert at the Center for Space
Research (Ref. 6). He first applied Ginzburg's phase expan-
sion technique to the correlation reception of a rectangular

pulse. This has provided much of the groundwork for my thesis.

A. Sunblazer Radio Propagation Experiment

A wave packet propagating through an ionized medium
(e.g. the corona) with no magnetic field present will have a

group velocity given by
v w
()2 =1~ (B2 (1)

Here w is the center frequency of the group, the "plasma

frequency" wp = 2m fp =J§§j—, and n is the number of electrons
per cc (Ref. 13). We see, then, that the signal velocity, and
hence propagation time, is a function of both frequency and
electron density. We can use this fact to measure the coronal
electron density by transmitting signals on two separate
frequencies through the corona and finding the difference in

their propagation times. The relative propagation delay

between signals on frequencies fl and f2 > fl’ will be

_ I
T -.J[V—— v——] ds (2)
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where the line integral is taken along the propagation path.

Then,
1J 1 1
T=ZlAF 752 - /o 7] +ds
c 1 (fp/fl) V1 (fp/fz)
Or, for fl larger than fp’

le fl2
T = EJf%IT [1—(f;) ] +ds (3)

We would like to make T as large as possible so as to maximize the
sensitivity of the experiment. Therefore fl is made slightly
larger than the plasma frequency of the innermost region of the

corona, and f. is chosen so that l—(fl/fz)2 is close to unity.

2
Present plans call for fl = 75 Mcps, and f2 = 225 Mcps (Ref. 9,
pps. 38-40).
If fl, f2, and fp are substituted into (3), we find

that

T = 2.13-10"!°N seconds

where N = Jnds is the "columnar density", or total number of
electrons per square centimeter along the transmission path.
This columnar dénsity, N = N(p), is related to the radial

density, n(r), (see figure 1) by the integral

o o

N(p) = Jn(R)dS = ROJn(r)ds (4)
where the lower case distances have been normalized with respect
to the solar radius R - N(p) will be found by measuring T for
different points along the satellite trajectory, and hence for
different p, the path offset. As seen above, the radial
density n(r) can then be obtained (Ref. 9, pps. 8-11). This
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\' p p - path offset

Figure 1 - Propagation Path Through Solar Corona



is the basis for the radio propagation experiment.

B. Communications Aspect of Sunblazer

As seen above, we would like to measure as accurately as
possible the arrival time of a received pulse. We can view
this as a communication system which is modeled as in figure 2
(Ref. 5, p. 2). Note that this model neglects dispersion.

The transmitted signal is
X(t) = V2Et m(t)coswot = Re[/2Et m(t)ejwot] (5)

where m(t) is narrow-band and is normalized to unit energy

i.e.

[e o]

sz(t)dt =1

- OO

The random phase, 6, is modeled by a uniform probability

density as below
ﬁ’e(e»
|

amw

—= O

AL
The attenuation is assumed to be known (random amplitude
fluctuations are ignored). The propagation delay (or arrival
time), Tor is treated as a real (non-random) but unknown
parameter. Finally, the additive noise, n(t), is modeled
as white Gaussian, with variance No/2. The received signal

is then



Sunblazer
transmitter

| :
| Propagation :
phase shift | p|Attenuation > delay
| 9 E_/E T 4— |
r'r o
I I
L - ] ]
Yr(t)
Receiver
Figure 2 - Model of Sunblazer Communication System
sinw_t m(t-1)
o
LPF jét —.l Squarer
r(t) — 2 (1)

A B - |c
LPF jGt Squarer

coswot m(t-1)

Figure 3 - The Correlation Receiver
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r(t) = /2Er m(t—ro)'cos (wot + 8) + n(t) (6)

There are two problems associated with this communication
system. First, a decision must be made as to whether or not a
signal is actually present; this is the detection problem.
Then, assuming that a signal is present, the arrival time T
must be measured, this being the estimation problem. To
achieve both detection and arrival time estimation for this
phase incoherent situation, it is Suffigient (and optimal)
for the receiver to calcﬁlate the square of the correlation
function of the demodulated signal (Ref. 17, Chap. 7). This
"correlation receiver" is shown in figure 3. We can trace the
operations performed on the received signal as it goes through
the cosine channel as follows:

The received signal is

r(t) = 1/2Er m(t“To)[COSthCOSG—SinthSiHG] + n(t)

Then:
14 2Er 14 2Er
(a) : r(t)coswot = 5 m(t—ro)cose + —5 m(t—TO)COSZthCOSG
»’2Er
- 5 m(t—ro)51n2motcose + n(t)coswot

(B) : Low-pass filter subtracts out high-frequency terms, leaving:

V2E

r
— m(t—TO)COSB + ﬁc(t)

where nc(t) is the low-frequency cosine component of the noise.
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(C): After integration, we have

V2E

T
2

0
{m(t—-[ Jm(t-1) cossdt + noise term
J (o]

-0

We now introduce an important assumption about the random
phase 6 which will be part of our model of the channel. Namely,

we assume that 6 = 6(t) is slowly-varying with respect to time.

Specifically, 6 must remain approximately constant over the
period of integration. When this is not the case, the commu-
nication scheme will break down.

Then bringing cos6 outside of the integral, we have

V2E

—5— Cos® Rmm(T—TO) + noise term
where Rmm(T—TO) is the shifted auto-correlation function of
the message waveform m(t). Similarly, after integration in
the sine channel we have

V2E

—L sinsR (t-1 ) + noise term
2 mm Q)

(D) : After squaring and adding we have, as the output of the

optimum receiver,

=

r

v2(t) = 7= (t-1 ) + noise terms (7)

R?_
mm
A decision as to the presence of the signal (detection)

is then made based on the height of the central peak of this

output y2(t), and an estimate of T is made by looking at the
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time~position of the central peak. Some measures of performance

can then be chosen that will tell us how certain our detection
decision is and how accurately we have estimated T Since
the receiver is optimal (in the mathematical sense), we will
then know what is the best possible performance that we can
expect. The details of how this is done are left for the

next chapter, and at this point it is important only to be
aware of two points.

First, detection performance depends only on the peak
value of Rmm' and hence only on the signal energy. Thus no
amount of coding can improve detection performance. Coding
can, however, be beneficial with respect to arrival time esti-
mation. It turns out (and will be derived in the next chapter)
that for large signal-to-noise ratio the mean-square estimation

error is given by

1

— 1
ec (1) = (g2 (E_/N_YW?

where W is the effective bandwidth of the signal. What we
would like to do then, is for a given available energy, trans-
mit a signal with as large a bandwidth as possible. Theoreti-
cally we could put all of the energy into a single narrow pulse.
This is impossible, however, because of the practical problem
of peak power limitations that arises in building the trans-
mitters. It is necessary, then, to take a long, low-power
pulse, and code it so as to increase its bandwidth. A

class of codes which achieve this are the Barker codes.

-G



>
5
¢

+1 ——t +——t : ot
2 4 6 8 10 12
-1 4 | (—
Figure 4a - Eleven-bit Barker Code
Rmm(r) =J m(t)m(t-1)dt
-12 -10 -8 -6 -4 -2 2 4 6 8 10 12
> % % : i i } } t — T
-14

Figure 4b - Corresponding Auto-correlation Function
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These are pseudo-random codes whose auto correlation functions
have a central peak N times as high as any of the side peaks,
where N is the number of bits in the code. The eleven-bit
Barker code, with its auto-correlation function, is shown in
figure 4. Although the longest known Barker code is thirteen
bits long, the basic code can be folded on itself to increase
the energy. Sunblazer will probably use a triply-folded

version of the eleven-bit code (Ref. 9 pps. 46-48).

C. Dispersion

The receptioﬁ scheme that has just been described does
not take into account the dispersive effect of the plasma.
In fact, the received signal will be a corrupted version of
the signal that was expected when the optimum receiver was
designed. The performance of the receiver will be degraded--
the estimatioh error will become larger, and more important,
if the dispersion becomes large enough it may not even be
possible to detect the signal. Also, it is difficult to
compensate for the effect before hand by changing the
receiver design, since the degree of dispersion will change
with time and will often be unpredictable.

Clearly dispersion might prove to be an undesirable
problem in the practical sense, and this would be reason
enough to examine it in detail. The problem also has import
in the theoretical sense, as becomeé apparent if we consider
the following points.

First, one should realize that the primary Sunblazer
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experiment depends upon the fact that the medium is dispersive.
Dispersion simply implies that the phase velocity of a propa-
gating wave is dependent on frequency. If the phase velocity
was not a function of frequency, then the group velocity of
the signal could not be a function of frequency either. Hence
dispersion doesn't enter into the picture as simply an
annoying side effect; it is an inherently necessary phenomenon.
Although dispersion is a necessary effect, the degree
to which it manifests itself is perhaps not as clear. If our
signal was to be a long pulse (essentially monochromatic) it
would be virtually unaffected by dispersion. However, the
accuracy with which we can estimate the arrival time of the
signal becomes better as we make our signal bandwidth larger.
This, of course, is why we code the signal in the first place.
But the larger we make the bandwidth the more significant
becomes the effect of dispersion. And, as will be shown later,
as the dispersion increases the estimation error also increases.
What we have, then, is a trade-off. On the one hand we know
that increasing the bandwidth decreases the estimation error,
but on the other hand the degree of dispersion becomes larger
which increases the estimation error. The point here is that
dispersion puts an inherent mathematical limitation on the
best performance that we can hope to achieve. In this sense
dispersion should naturally be part of a communication

theory approach to the Sunblazer type problem.

D. Thesis Objectives

The primary goal of this thesis is to see how dispersion
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fits into the communication problem, and what it does to
receiver performance. To do this I have first defined and
examined some measures of receiver performance, for Loth
detection and estimation. Then I have expanded and generalized
these measures so that they would be meaningful when applied
to a corrupted signal that has been processed by the correla-
tion receiver described earlier. Next we will find a way to
see just what the dispersed signal looks like, and determine
a meaningful measure of dispersion. This is then applied to
the specific case of the coronal plasma, and the measure of
dispersion is evaluated for different points in the Sunblazer
trajectory. Finally numerical results are obtained that tell
us exactly what happens to the receiver performance as the

amount of dispersion changes.
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II. THE COMMUNICATION PROBLEM

In this chapter we will introduce .dispersion into our
model for the communication system, and see how it is related
to receiver performance. As a primary result, we will find
that to determine the change in receiver performance it is
necessary and sufficient to calculate the cross-correlation
function of the dispersed and un-dispersed signal. In arriving
at this we will first examine in some detail the detection
and estimation problems for the case of no dispersion, and in
doing so we will introduce some measures of receiver performance.
It will then be easy to re-evaluate these performance measures

for the case of a dispersed signal.

A. Detection - No Dispersion

We have seen that y?(t), the output of the correlation
receiver, consists of a term proportional to the square of the
auto-correlation function of m(t), plus added noise terms.

This output can be observed and used to decide which one of

two hypotheses we believe is correct--namely, a signal is
present, or a signal is not present. We would expect to have

a decision rule of the form: "A signal is present if the
output of the correlation receiver (peak output) is greater
than some threshold value, say ¢." In figure 5 a typical exam-

ple is shown in which we would say that a signal is present.

ROC Curves As a Performance Measure:

We should first recognize that there are to possible

types of detection error that can occur, which we can call

"miss" and "false alarm”. In the case of a miss, our peak
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correlation output is below the chosen threshold g,even though
a signal is actually present. In the case of a falsealarm, a
peak is above the threshold though no signal is present. The

associated error probabilities are then

Py = Plisg = Pr(€|signal present]

F = Pralse alarm = Pr(¢|signal absent]

Phiss ~ 1- Pietection

For a given signal-to-noise ratio! we will have a trade-off

between PM and P and we could draw a curve relating the

F’
two (figure 6a). Where we are on this curve depends on our
choice of threshold, ¢. For example, choosing & large will
result in a small chance of false alarm, but a large change
of miss. We can make PM and Po whatever we want as long as
we limit ourselves to the curve; to get off of the curve we
would have to change the SNR. In general, we could calculate
an entire family of curves for different SNR that would completely
describe the operation of the receiver as a detector (figure 6b).
This set of curves is called the "receiver operating charac-
teristic" (ROC).

The point here is that our choice of ¢, i.e. our decision
rule, is somewhat arbitrary in that it depends on what type
of performance we desire. For example, we might assign

a certain cost to making each type of error, and try to

minimize the average cost:

ISNR = E_/N_ = signal energy over noise spectral density.
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C = C(M)PM + C(F)Pp

Here we would pick ¢ so as to minimize C. This average cost
would then be our performance measure.
We could also use a total error probability for a

performance measure, namely:

P(€) =Pr [signal present]-P_+Pr (signal absent] -P_

M

This total P(E), however, is often not very meaningful since
the a priori probabilities are usually either unknown or are
changing with time. The average cost C is also of questionable
value as a performance measure, since values for C(M) andC(F)
are difficult to assign and may also change with time.

I feel that the set of ROC curves alone is the best
way of describing receiver performance, particularly for
Sunblazer. From these curves the threshold £ can be deter-
mined for any decision criterion (e.g. minimax, Neyman-Pearson,

etc.) and a corresponding performance measure can be evaluated.

Calculation of the ROC Curves

We are interested in the statistics of the peak value
of y(t), the output statistic of the correlation receiver.
Suppose that we could write the conditional probability
densities for this peak output (call it y) given that a signal
is absent, and given that a signal is present (figure 7).
P, and P could then be found by integrating the densities

M F

over the regions indicated. For a given SNR we would then
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A py(ylsignal absent

py(y|signal present)

>

peak output
g (pick arbitrarily) y=y(ro)

Figure 7 -~ Conditional Densities for Peak Output

have PM and PF both as a function of ¢ and obtain Py in terms
of Pp, which is the desired result.

For the case of white Gaussian noise and coherent phase
the solution of this problem is not too bad, and it is
possible to determine an analytic expression for P, as a

function of PF (Ref. 11). However, for our case of incoherent
phase the probability densities contain Bessel functions, and
the solution is considerably more difficult. In fact an
analytic solution for PM in terms of PF is impossible, and
elimination of ¢ must be carried out by means of machine
computation. Interestingly, it turns out that if random
amplitude is included in the channel model (Rayleigh density)
together with incoherent phase, an analytic solution is

possible. It is not my intention, however, to compute the

ROC curves for any of these cases. The problem is a classical
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one, and appears in the references (Ref. 11, chap. 3; Ref. 16,

chap. 2).

B. Estimation - No Dispersion

In estimating the signal's arrival time we must again

consider two types of errors that can occur. The first type,

which we can call "catastrophic error", results from the pres-
ence of secondary peaks on the function y?(t) which are removed
from the main peak. If the receiver should lock on to one

of these secondary peaks, a large estimation error will, of
course, occur. For large signal-to-noise ratio there is
little chance of this happening. If the SNR was low enough

to make catastrophic error a significant problem, it would
also be too low to successfully detect the signal. In this
case, present Sunblazer plans call for sequential detection,
which effectively raises the energy, and makes catastrophic
error again improbable. For this reason I have chosen to not
analyze this type of error in any detail.

The second type of error occurs when noise causes slight
shifts in the position of the main peak. This type of error
is, of course, always present, and results in a small inaccuracy
in the estimation of arrival time. A good performance measure

associated with this kind of error is the mean square estima-

tion error , £4(t) = (?—ro)‘, where ¥ is our estimate of the

actual arrival time L This mean square error is dependent
not only on the signal-to-noise ratio, but also on the signal

bandwidth. This dependence can be derived as follows.
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Assume the transmitted signal is of the form

s(t) = m(t)cos(wot—e)

i 2 = B
with Jm (t)dt Et Er

Here, for simplicity, we have assumed that attenuation and
random phase are introduced at the transmitter. The received

signal is then
r(t) = S(t—to) + n(t)

where To is the actual arrival time. Let % be our estimate
of . Then we would like our receiver to pick t=t such that

the density plt|r(t)] is maximized.

_plt,r(t)] _ plr(t) |t]lp(r)
plefz(t)] = plr(t)] plr(t)] (8)

plr(t)] is independent of 1, SO we can equivalently maximize
plr(t)|t] +p(r). Then, assuming no a priori knowledge of 1, we are

left with maximizing plr(t)|t] (MAP estimate).
Pyt |« (F(E) 1) = p () [ (E)=S(E) |, 0] (9)

Average this over the random phase 6:

[r(t)-s(t)]|t] )[r(t)-S(t)IT,G]e

pn(t) pn(t

= pn(t) [r(t)-S(t-T1) le]e (10)

The noise n(t) is a Gaussian random process that can be projected
onto a set of orthornormal functions to yield independent Gaussian

random variables.
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1
pn(B) =_ 1 ﬁ_,l
- (NNO)N/Z

where N is the number of orthonormal functions in the expansion.

[e o]

Jul? = peu = Juz(t)dt

[ee]

then, p_ ¢, [n(D)] = == N
Qo

Z!l—'

Juz(t)dt (11)

© )
J[r(t)—S(t—T)]zdt

1
)[r(t)—S(t—r)]e]B = /;ﬁ; e o

2|~

- 00

pn(t

(12)

(e ]

J[r(t)—s(t*r)]zdt =

[£2 (t)-2r(t)S(t-1) + S2(t-1)]dt

g —-38

- 00

The integrations of r2(t) and S2(t-t) will not depend on t;
therefore they can be ignored and replaced by a constant. The

receiver, then, should maximize:
3
8

2
Ng Jr(t) S(t-1)dt

-0

Ke

2
= 1 = Ir(t)m(t-r)cos(w t-6)dtgy,
Kegm 1 e N/ © (13)

- 00

since cos(mot—e) = CcoOs motcose + sinwotsine, we have:

Pn(t)[r(t) - S(t-1)] =
2'" o0 o)
K-l— J %— [cosejm(t—r)r(t)coswotdt + sinejm(t—r)r(t)sinwotdt]
2m e o 2 -5 de
© 2
I § AT LY (14
o c s
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Where IO( ) is the zero-order modified Bessel function,

and LC(T) =

m(t—T)r(t)COSwot dt (15a)

8 Y— 8

and Ls(r) = m(t—r)r(t)sinwot dt (15b)

8 — 8

But we observe that Lé(T) + Lé(r) is just the output of the
correlation receiver (the function of the low-pass filtering

is carried out, in effect, by the integration).

[e o]

Jm(t—r)r(t)coswot dt = Jm(t—T)[m(t—To) + nc(t)]dt

- 00

(16)

Since nc(t) is zero mean, and n(t) and m(t) are uncorrelated,
the integral of m(t—r)nc(t) will be approximately zero,
especially compared to Rmm(T—To). Hence we disregard it, and

are left with:
Py [E(E) =8 (£=1)1 = KT (| R o (o=t ) |) (17)
(o]

Approximation of Large Signal-to-Noise Ratio:

R (1-1)
| “mm o|
If is large, we can approximate IO(X) by its

N
o

asymtotic value for large X (Ref. 1):

eX
IO(X) %/§
2
——IR (t-1 )|
or P [r(t)-S(t-1)] ~ L e No MM ©
n(t) /%_IR (t-1 )
J o ™M ° (18)
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We will be interested in the variance of this density--i.e.

how fast it varies about 7 . But /]Rmm(r—ro)l is slowly

varying comapred to elRmm(T_To)|, which is very highly peaked

at t=t_. Hence we ignore the V|R__(t-1 )| term, and write
o ram o

that:
2
_ _ — [R (-1 )l
pn(t)[r(t) S(t-1)] ~ e NO mm o (19)
We now expand |R_ (t-t )| in a Taylor series about 1t = 71 _:
mm o} o
R (t=1 ) = R_(0) + S |R (t-1)| . (t-1 )
mm o) mm dt mm o 0
d2 (t-1 )2 =T
+ -aTz-IRmIn(T— TO)I . 20 O
T=TO
Since R__(1—-1 ) is a maximum at v = t1v_, the first derivative
mm o o

term is zero. Also, Rmm(O) is not a function of 1 and hence

can be ignored. We have, then,

- - " . 2
Pn(t)[r(t)—S(t~T)] N eNolRmm(T To)l (A1) (20)
=0

where At = T-ro

This is the probability density for the estimation error, Ar.
Then (41)2 = ¢2(1) = the variance of this density (since it

. is a Gaussian).

€ (T) = 2 _l
o B ()1
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where ¢ _(w) is the spectral density of IRmm(r)l.

oo

IRmm(T)lu = - %? J wZ@mm (0) el ®Tdu
1
|Rmm(0)|" = - 5= JwZQmm(w)dw
= - E W?
r

Here W is the "effective", or mean-square, bandwidth, defined by:

IwZQmm(w)dw ) ©
J@ (0) dw

We have, then, for large SNR:

1
2(Er/NO)W4

e (1) =

for W in radians per second, or

— 1
e (1) =81rl(Er/No) w2

for W in cycles per second.

Approximation of Small Signal-to-Noise Ratio:

If |R
mm

(21)

(22a)

(22b)

(r-ro)|/No is small, we can approximate the modi-

fied Bessel function by the first two terms in its power

series representation:

1 1

= X2 (_ X2)2 (=
_ 4 L4 4
I (X) =1+ anZz tenz t
1+% X2
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In p, 4y [E(£)-8(t-1)] = 1n K + In[l + > R2 (t-t_)]

o
for small y, 1In(l + y)=y, so we have:
—a (e . 1 2 -
1n Pn(t) [r(t)-S(t-Tt)] =ln K + N—o—z- Rmm (T TO)
L R2 (t—1_)
or, pn(t)[r(t)—S(t-r)] = K'e No2 mm o (23)

2 - ; i .
Now expand Rmm(T To) in a Taylor series about ot

1 a2
R2 - ~ A+ = = R2 - . 2
mm(T To) 2 3?7 ®m (z To) ’ ()
=T

1

ing(R%m(T))" « (A1) 2
Then, pn(t)[r(t)-S(t~T)] = e o (24)
and (30)Z = €2(x) = -1 . (25)
(Rém(T))" ‘ﬁgz

o)

2(§l%¥%ﬁliqz+ ZIRmm(T)

a2 (R2
gz (Ron (1))

. dz]B@m(T)l
dz~

The first term on the right is zero, so:

i T et ~ (26)
2 R @ |- [Rm O [
(o]

IR (O] = E_

IR (0)|" = - E W?

We have, then, for small SNR:

—— 1
e (1) = 2(Er/No)zwé (27a)
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For W in radians per second, or

e 1
e (1) = 8w (E_/N_) 7W? (27b)

for W in cycles per second.

An important point in these derivations is that ¢?Z (t)
depends only on the magnitude of the autocorrelation function,
|Rmm(r)|or Rém(T)’ which is the output of the correlation
receiver. This came from the integrals Lc(r) and LS(T) in
equations 14 and 15. Suppose now that the received signal
consists of noise plus a corrupted version of m(t), say a(t)
(it doesn't really matter what kind of corruption it is).

We will show next that if we put this corrupted signal into
our correlation receiver, the output will be the squared
cross-correlation function Rgm(r). The mean square error

of arrival time estimation will depend only on this cross-
correlation function, in particular, on its maximum value and

its mean-square bandwidth.

C. Detection and Estimation for the Dispersed Case.

Suppose now that our received signal is of the form
r(t) = Rela(t-t)ed (®ot*®)7 4 n(t) (28)

where a(t), the dispersed version of m(t), can be complex,
i.e. a(t) = ar(t) + jai(t)

We want to see what the output of the correlation receiver

is. Referring to the cosine channel in figure 2:
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A: r(t) cosw t = Rela(t-r )ej(wot+e)]c05m t
o o o
+ n(t)coswot

=ar(t—ro)cos(wot+6)coswot—ai(t—To)51n(wot+e)coswot+n(t)c05wot

=ar(t—To)[coswotcose-s1nwot51ne]coswot

—ai(t-ro)[31nwotcos + coswot51ne]coswot + n(t)COSwot

= _ 1 1 _ _ 1. .
—ar(t To)[f + vl cosZwot]cose ar(t TO) > 51n2m0t31ne

1 . 1 1 .
—ai(t—ro)f 51n2wotcos —ai(t_To)[7 + 5 cosZwot151ne + n(t)coswot

B: After deleting the high-frequency terms, we are left with:

1 1 .
far(t—ro)cose - fai(t_To)Slne + hc(t)

C: After integration, we have:

1 1 . .
fcoseRarm(r ro) ESlneRaim(T ro) + noise terms

Similarly, after integration on the sine channel we have:

1. 1 .
- >Sin Rarm(T_To)- 7coseRa (T-ro) + noise terms

.m
i
D: Squaring and adding, and ignoring the noise terms, we have:
y2(1) = Lcos206R2 (-t ) + sin2eR2 _(1-t_)
4 a_m o 4 a;m o

-SlnecoseRarm(T-TO)Raim(T—TO)

l.. 5 2 1 2 _ . _
+ zSin eRa m(r ro)+4cos eRaim(r TO)+Sln9COSGRa m(r To)Ra.m(T TO)

or, y*(x) = % Rg m(T_To)+%R§.m(T—To)
r i
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=

y2(t) = —R;m (T—To)Ram(T-TO) = %lRam(T_To)lz (29)

o

The output of the correlation receiver, then, consists
of the squared magnitude of the cross-correlation function of
the dispersed and undispersed modulation, buried, again, in
noise (for simplicity we have set /"fﬁg = 1). We would now
like to use this fact to examine the problem of detecting

and estimating dispersed signals.

Detectibn:

We have seen before that the most general way of describing
the receiver as a detector is to calculate its set of ROC curves.
This, in turn, depends on the statistics of the peak correla-
tion output. Specifically, we had to know the two conditional
probability densities for the random variable y, given a signal
present or absent. Then to determine the ROC curves (and thus
any other performance measure) for the dispersed case, it is
necessary to recalculate the two conditional densities. The
density py(ylsignal absent), and its corresponding probability
Pps will not be any different since if there is no signal
present dispersion is irrelevant.

If the density py(ylsignal present) is known for the
undispersed case, recalculating it for the dispersed case is
also simple. This density is generally a function of both
the random variable y and the signal energy Er' Dispersion,
however, is an energy-conserving process; the shape of the

signal may change, but its total energy always remains
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constant. Rewriting the density, then, requires simply a
transformation of the variable y.

If we let Ygq be the peak output for a dispersed signal,
and plot it as a function of increasing dispersion, we might
expect a curve (ignoring noise) such as the one drawn in
figure 8. We could say, then, that Yq = oY, where o is a
function of the amount of dispersion, and depends on the
particular signal. Then to get the new density pyd(yd|signal

present), we make the transformation Yq = oY and get:

1 (zglsi nal present) (30)
apy ¢ g P

P (ydlsignal present) =

Yq
This density could then be integrated to get the new miss

probability (again dependent on the threshold), Py s which
d

would be a function of a. From this, and the PF calculated
previously, a new set of ROC curves could be found for any

particular a.

Estimation:

We would now like to rewrite the expression for the mean
square estimation error for the dispersed case. Lé (t) + Lé(T)
(eg. 15) is again the output statistic of the correlation
receiver. It now, of course, represents the cross-correlation

function of the dispersed and undispersed signals:
2 2 - - 2 ;
LC(T) + LS(T) = lRam(T TO)I + noise terms

As long as Ram(r—ro) is still peaked at T=T,, We can use the

same analysis as before. For large signal-to-noise ratio
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Figure 8
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we would then have:

edZ(T) =3 —1 (31)
ﬁ_-lRam(o)I
o
Defining
¢ o (w) = Je—ijlRam(T)|dT (32)

we then have:

eé(T) = T (33)

For small signal-to-noise ratio the mean square estimation

error would be

eg (1) = 3 ~
ﬁgRam(O)IRam(O)l"
or,
?éTT—) _ : (34)
Ram(O) 2 (
(—ﬁg———)Jw @am(w)dw

This expression for EET?T for small SNR is not very meaningful,
however, since it neglects catastrophic error, and, as mentioned
earlier, sequential detection will be used to raise the signal
energy anyway.

In summary, it should be evident at this point that per-

formance measures for the detection and estimation of the
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received signal can be evaluated if we know the magnitude of
the cross-correlation function Ram(r). In particular, detec-
tion performance is determined by the peak value of this func-
tion, and the mean square estimation error can be calculated
from the Fourier transform of IRam(T)I as in equation 33.

The next step, then, is to discuss the calculation of this

cross-correlation function. This will be the topic of the

next chapter.
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IIX. DISPERSION AND THE CROSS CORRELATION

FUNCTION R (1)
am

So far in our discussion of the reception of corrupted
signals we have not explicitly stated anything about the
nature of the corruption except that it be energy - conserving.
We saw that whatever form this corruption took, all that
mattered was the resulting cross-correlation function Ram(r).
Our goal now is to find an expression for this Ram(r)when the
particular form of the corruption is dispersion.

Ginzburg (Ref. 7, pps. 403-423) has presented a way of
conveniently representing a dispersed signal by employing a
Taylor expansion of phase. This approach will be described
and used to get an expression for a(t) in terms of m(t). 1In
doing this we will find a parameter that will serve as a good
measure for the amount of dispersion. Next we will examine
a specific type of dispersion in terms of the medium that
causes it - namely, the homogeneous, isotropic, collisionless
plasma. It will then be possible to test the assumptions
inherent in Ginzburg's approach in the light of the Sunblazer
experiment. Finally, we will perform the correlation and

obtain an expression for Ram(r).

A. Representation of the Dispersed Signal.

This section follows Ginzburg's approach of using a Taylor
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expansion of phase to obtain a convenient expression for the
dispersed signal. In this development, Eo(t) is the modulated

version of m(t) and E(t) is the modulated a(t).

We can represent a plane wave incident on the dispersive

medium by:

E,(t) = 5= Lg(w)ej“’t dw (35)
where,
g(w) = f Eo(t)e_j‘*’t dt (36)

After this signal has propagated a distance z through the

dispersive medium, we have:

E(t) = == f R(w)g(w)eld W8 = ¢ g, (37)

where R(w) is an attenuation factor, and ¢(u) = w n(w)z is
c
the phase of the signal.
Now if we assume that the signal is quasi-monochromatic,

i.e. Aw << w, + We can write:

E (t) = m(t)ej‘*’Ot (38)
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Now substituting (38) into (36) and changing t to n,

we have:

[ (0 -
gtw) =] m(ned o™ Ngy (39)

Now we substitute this into (37) , and we make the assumption
that R(w) is approximately constant around N and for simplici-

ty set it equal to one:

fee]

E(t) = %? J J m("])ej [wt+(wo"w)n_¢(w)]d”dw (40)

Now we would like to expand ¢(w) in a Taylor series about

0. We must recognize, however, that our signal, a slowly-

varying time function modulating a cosine wave, is double side-
band (figure 9).
g(w)
A

Sy
- — — — -

Figure 9
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Hence in taking our integral with respect to w from - « to

+ = , we must use a different Taylor series representation of

¢ (w) for w < 0; i.e. for w < 0 we must expand ¢ (w)about —wge
In order to avoid this complication we will ignore the left

side of thé spectrum and integrate with respect to w from O to
o, In the end, then, we would take the magnitude of our answer
instead of the real part. This results in the loss of phase
information, but the received signal is phase .incoheren. anyway.

We write then,

E(t) =

fm(n)ej[wt *olugmedn=e ()l

I\Jll—‘
8%8

(41)

Now expand ¢ (w) in a Taylor series about Wy to three

terms:

b (0) = dlul) + ' (u)a + T4" (w) 02 42)

where @ = w —wge We will see that ¢ (wo) will be a measure
of the phase delay, ¢'(wo) a measure of the time delay, and
¢"(wo) a measure of the dispersion. Substituting [42] into

[41] and making the appropriate change of limits:

m(n)ej[wt+‘wo‘“)”‘¢(wo"¢"wo)ﬂ—%¢"(wo>921

1
E(t) = 2— J dQdn

8‘“—%8

Y S 2
7 0" () %] 3041
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oo 00

_ olut=e(w )] 1
27

——yy

o

We now make the substitution

1 ' 1 n
ij(n)ej[ﬂt—ﬂn—{m (w ) =522¢" (0 )] dodn

(43)

n-t+¢'(wo) 2 )
o] (wO) (Q + ¢u(w ) ) = 7g
o
then —
dq =/¢"(wo) d¢, and
2
(n—t+¢'(m ))
] 2 _ ] o —_
¢ (wo)Q + 2Q(n-t+9¢ (mo)) + ¢"(wo) = ng2
So,
: T .———-——(n_t+¢')2 L]
E(£)=ed [9ot7¢ (0) ] %_WJ Ty m(ne? 24 d"[ e 37%3;
o

E(t)=el [0ot70 0 )11

- 00

Here F is

F(u) = C(u)+j s(u) =

u
F*(u) = C(u)-j S(u) =J
0

27w J[‘/g_"m(”)ej :

(44)

(45)



Now making the substitution

(n-t+¢" (wo))2 _ qu?

2¢"(wo) )

we have dn=/n¢"(wo)du, and

e o)

. _ T2
E(t)=ed oot ¢ (0 )] % Jm(t—¢'(wo)+ [16" (a) weI2™ -

- 00

l_' ¢ll (w )
=L+ F"(/ —c wo—u> du (46)

At this point it is worthwhile summarizing the assumptions

we made in arriving at [46]:
1. Linearity of the field equations.
2. M(t) is gquasi-monochromatic, i.e. Aw<<wo.

3. R(w) is constant around o
4. The Taylor expansion of ¢ (w) exists.
5

. Higher order terms in this expansion (e.g. ¢"'(wo) ) can

be neglected.
We can simplify (46) significantly if we make the additional

assumption thatdfb (wo)

w is large; i.e. the assumption of large
W
dispersion. We have, then,

(oo}

. . il
E(t)=l%l ej[wot—¢(wo)]Jm(t—¢'(wo)+ /n¢"(wo) u)ej_2-'u du (47)

- OO

which is valid only when:

6. ¢" (wy)
— T Y >>1; i.e. large dispersion.
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Equation (47) is our primary result. We can check
it by letting ¢"(wo) > 0 (no dispersion) and recognizing

that o
.1u2
J el2¥ qu = 1+3

- OO

Then we get, as expected,

E(t) = m(t-¢' (wo))ej[wot-¢ (w,)]

Here we can recognize that ¢ (wo) represents the phase delay
and ¢'(wo) the time delay.

At this point I would like to introduce the "dispersion
time" as a measure of the amount of dispersion; namely
We will see later that this parameter is useful in that it is

related to the elementary pulse width of the signal.

B. Assumptions and Approximations - the Coronal Plasma.

If the six assumptions listed previously prove to be
valid, then we can use equation (47) to obtain the desired
Ccross-correlation function. In this section we will examine
the homogeneous, isotropic, collisionless plasma (a good first
oraer approximation to the extended solar corona) as a dis-
persive medium. Then we will test and verify our assumptions
for the particular case of Sunblazer.

We begin by deriving the dispersion equation for the

medium. Writing the first two Maxwell equations:



VxH = J+ 3%%5 (48)
VXE = _9_1;_%2 (49)

For the collisonless plasma we can express the current J as:
J = nev (50)
where V is the average velocity of the electrons, the equation

of motion is:

ma€ = eE (51)

_ ne’E 32¢ E

E = i E eJ(0t-kz) (52)



we have for the wave equation

2 2 2
] EX ne “oEx 1 9 Ex
+ c? ot? (53)

3zZ m

Substituting (52) into (53) giveszus ghe dispersion equation:
2 ne2uO w2 - BETHLC
C m C2

Defining the "plasma frequency",

2 2
ne C
Mot , 2 - ne? (54)
m me
P o

The dispersion equation becomes:
k(o) = 2/67=a? (55)

Equation 55, plotted in figure 10, completely describes the

plasma in terms of a dispersive medium. When w<wp, k(w)

A

k({w)

— ©

Figure 10 - Dispersion Equation for Collisionless Plasma
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becomes imaginary and the wave attenuates (non-uniform plane
wave). When w>wp the wave propagates without attenuation.
The closer w is to mp the greater is the second derivative of
k(w) and thus the greater is the amount of dispersion. As
k(w) gets very large, k(w) > w/c, and the amount of dispersion
approaches zero.

To get some values for wp for the solar corona, we need
some numbers for the electron density. If n is expressed as

the number of electrons per cc, we find that

R

oy 5.6-10%+nt/? radians/sec.

or
£ 9-103.n/? cps.

P

[

To get some numerical vlaues for n we use the Allen-Baumbach
model for the solar corona (Ref. 9). This assumes a spherica-

1ly symmetrical corona, so that n is only a function of radial

distance. Specifically, for r < 1.5 R, :
n(r) = 108 [1'55 + 2'?2] electrons/cc
r r (56)

and for 1l.5R_ < r < 50 R_:
o o)

8 6
n(r) = l%— + lg— electrons/cc
r r (57

where r is in solar radii. Also, direct measurements have shown
that in the vicinity of the earth (r = 215RO), n =10 electrons/cc,
We find, then, that at r = 3Rb’ fp = 4.,5Mcps; and at r=l.5R0,

fp =~ 30 Mcps. Of course in the event of such occurrences as
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solar flares and prominences, the electron density can deviate
enormously from these estimated values.

Clearly k(w) lends itself to a Taylor series expansion.
What we would like to show is that we can neglect the higher
order terms in this expansion, i.e. that we can write eqguation

42 to good approximation. To do this we simply expand ¢(w) =

k(w)z to four terms and show that

4th term
3rd term << 1

i.e. |k"""(w )
_“.._i_ << 1

3k" (w )

o}

I will not go through this calculation here, but only indicate

the results. w 500 x 196

@]

For r=1.5 R, ®
o

b 200 x 10° , we find that:
Aw = 5 x 106

k|||(w )Aw
o = .006<<1

3k" (wo)

Also, as wp becomes smaller, this ratio asymtotically approaches

a small value:

lim ‘k' vy ('u)o) Aw
3k (wo)

|
A
A
[

w_->0
p
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Then, to well within 1%, we can ignore the fourth term in
the Taylor expansion.
Next we would like to look at a second order model for

the coronal plasma and examine the attenuation due to colli-

sions. It is shown in the appendix that the coefficient of

attenuation due to collisions is given by:

v (EE)

w
2¢c ./ 1- ()
w (58) -

Here v is the effective electron-ion collision frequency,
given by (Ref. 9, pps. 35-38):

v = 42.106.n7 /2

in the corona. The total attenuation along a ray path is then
A(p) = 2{ kds

At a frequency of 100 Mcps, and T = 106 °K, A(p) is 1 db at

p= l.SRO, is .02 db at 2Rb, and zero for p > 4 Ro. Hence this

attenuation does not play a large role. Nevertheless, if we look

at the variation in this attenuation over Aw = 5x106, we find
that
AR(w) 12
Aw
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Our assumption is valid, then, that R(w) is approximately
constant over Aw. This of course is really a result of the
fact that Aw << w.

As far as the linearity of the field equations is concerned,
there are certainly non-linear effects that can occur in the
propagation of a signal through a dilute plasma (e.g. Luxemburg
effect). I will only say here that we need not worry about such
effects because of the low signal power, and the fact that mag-
netic fields present are weak.

Finally, we would like to investigate the approximation of

large dispersion. We want to show that

¢"(wo) k"(wo)z
Tr___ “’o= ————_n wo >> 1

It should be clear from the expression above that the approxi-
mation of large dispersion is really an approximation of long
path length.

Rather than integrateJk"(wo)z over a changing wp’ I have
made the crude but conservative approximation that wp is constant
at its value at r = r for path length =z = SRO and zero else-

where. This gives:

¢|I (w )
— % = o +10"%
n o P

This becomes < 10 only for , < 105, or r < 3 electrons/cc.
And this is extremely conservative - for large p (small disper-

sion), z should be taken much larger than SRO. In any case,

the smallest n that we will encounter will be 10 electrons/cc.



Hence the approximation of large dispersion will always be
valid for any point in the Sunblazer trajectory.

What we have done in this section is to derive the dis-
persion equation for the coronal plasma, and show that equation

47 can be used to meaningfully represent the dispersed Sunblazer

signal. Now we can use this to get the cross-correlation
function, R__ (7).

am
C. The Cross-Correlation Function.

Let us rewrite equation 47 adding on the random phase angle

T2
P _ o jmu
E(t) = 121 oJ [wot ¢(mo)+6] lm(t ¢ (wo)+rou)e 27 du (59)
Now define the receiver time, t' = t - ¢' (wo); i.e. t' is the

time measured from the signal's arrival at the observation point,

disregarding dispersion. Then,

. . 1 ] OF .1 2
E(t')= l—;—l eJlugt +u e “’o"‘*""c?H]J m(t'+r_u)el2% qu (60)
Or, after demodulation,
. . 1 .1 2
a(t')= l%l ej[wo¢ (wo_¢(wo+e] J m(t'+iou)e32udu (61)
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We define the cross-correlation function:

R (1) = J a* (t'-t)m(t')dt’ (62)
Then,
. . , _ [+ ] o0 —.1
R (1) = lile‘J[wo¢ (wo) ¢(wo)+6] J J Mt )m(t —1+7 u)e J2u2dt'du
am 2 o
o T2 L, (63)
R (r)=iiie‘j[wo¢'(wo)*b@b)+6]} Rmm(T-TOU)e_qu du
am 2
o (64)
Letting 6' = mo¢'(wo)—¢(wo) + 9,

(ee]

. . ' _,lr_
R (1) = lgle_Je _J R n(t-toule 32%% 4y (65)
We want
1/2
YY(T) = |Ram(T)| =(Ram*(T) 'Ran(Tl)
1/2
= Z(Re[Ram(T)])2 + (Im[Ram(T)])ZZ (66)
Then,
o 2 [e 2/ 1/2
y (1) =/% JRmm(T—Tou)COS %uzdu + mem(T_Tou)Singuzdf}

(67)
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Equation 67 is our desired result. It gives the magnitude
of the cross-correlation function in terms of the auto-correlation
function of m(t) and the dispersion Toe This expression has
been evaluated over a range of ™ for three different m(t) -
a rectangular pulse, a 3-bit Barker code, and an 11l-bit Barker
code. Plots of these y(t) appear in the next chapter. Also,
an evaluation of T for different points in the proposed
Sunblazer trajectory has been done and appears as an appendix.

I would now like to make one observation about y(t) that

applies whenever m(t) is a binary code with baud length

(elementary pulse width) T. If this is the case, the degree
of corruption caused by dispersion depends only on the parameter

g= TO/T called the dispersion ratio. For example, consider

the ratio o = yd/y from equation 30.

l [ 2 2 l T m 2
5 (r u)cosfu du + 5 JRmm(rou)sinfuzdu

-0

2
Rom (0)
For simplicity in writing we break up the sum and consider just

the cosine part.

J (r u)cos T2 du

2 S
o 4v]
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But Rmm (0) = nT, where n is the number of bits (figure 1lla).

;
Then JRmm(rou)cos%uzdu
a v nT

Let = . A = . 1 -
To g T Then R.mm (le) Rmm (8 Tu) Rmm (Tou) inter

sects the u-axis at 1/8, 3/B, etc. Then only the height of

Rmm (Tou) depends on T, and we can normalize this:
1l .
Rnor(rou) = ETR(TOU) (figure 1lc)
then <

T2
nT JRnor(BTu)coszu du

a v -0

nT

.2
o v JRnor(BTu)coszu du

-0

2

The term <cos u is independent of T, Tor and B. And we

r
2
have just seen that Rmm(BTU) is dependent only on 8. Hence
o is a function only of 8.

Similarily we could show that yd(T)/ y(t) for any t is a

function only of B. This, of course, is what provides most

of the motivation for using T, @S a measure of dispersion.
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IV. RESULTS

This chapter presents the computational results for the
numerical calculation of y(1) = [Ram(r)l, and its application
to an evaluation of the performance measures described earlier.
Three cases for m(t) are examined--the rectangular pulse, and
the three and eleven-bit Barker codes. In each case the peak
value of the cross-correlation is first computed for different
values of B = TO/T. Then the entire cross-correlation function
is computed and plotted for different 8. Finally, these cal-
culations are used to compute the mean-square estimation error,

eZ (1), for large signal-to-noise ratio.

A. Computational Methods

Most of the computations were performed ﬁsing the MAP
(Mathematical Analysis Program) system through Compatible
Time Sharing on the IBM 7094 computer. MAP, designed for
the solution of mathematical proplems, replaces the normal
procedures of programming with direct command-response inter-
change between the user and the computer. For a detailed
description of the system, I refer the reader to the MAP
manual (Ref. 12).

Besides the simplicity of MAP, one of its big advan-
tages was that it saved a good deal of programming time by

making routines for integration, Fourier transform, etc.
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readily available. Also, MAP provides a plotting routine

in which up to three functions can be plotted on the same set
of axes. This made it possible to obtain a plot for the
cross-correlation function y(t) as soon as it had been cal-
culated.

One of the problems with MAP in its present form is
that there are a limited number of things that the system
will do. For example, MAP cannot handle functional arrays
of more than one dimension (this is to be changed in the
near future). For this reason I found it necessary to write
my own programs in MAD for the actual calculations of y (7).
Once these programs had been filed in memory, however, they
could be executed within MAP via MAP commands. Another
limitation in MAP is that it will only accept up to 1000
data points for the definition of a function. This is
insufficient for problems much more complex than an eleven-
bit code. It also puts limitations on the parameter 8. If
B is very small, the sine and cosine terms in equations 67
change extremely rapidly with respect to the auto-correlation
function, and a large number of data points are required for
a meaningful answer.

Another important point worth mentioning is that these
computations consume large amounts of computer time. To
calculate y(1) with enough data points to allow for a
calculation of its Fourier transform, as well as a plot, requires

hundreds of integrations. Calculations of a y(t) would
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typically use from four to five minutes of time, depending on
the range and number of data points desired. Additional time
is consumed in the calculation of €Z(t) and in the plotting
routines. Because of this sheer expenditure of computer
time (and money), the calculation of y(t) and its corresponding
eZ (1) was performed for only four or five values of B8 for each
of the three cases. The results, then, at least for the cal-
culation of €2(t), are limited in terms of detailed accuracy.
I would 1like to stress at this point that accurate
answers, in terms of a number of decimal places, is not the
aim of this thesis. The reason for spending time and money

on these computations is to give a qualitative idea of how

the communication scheme is affected by dispersion. This,

I feel, has been accomplished successfully.

B. Detection - Calculation of y(0).

We begin by rewriting equation 67 in a form that is

somewhat more amenable to computation. Recognizing that

Rmm(X) = Rmm(—x), and making the transformation v = rou—r, we
have:
4 i{
+1) 2 . +1) 2
y(t) = /% i R(v) cos % i%—%l—dv + %— R(v)51n% i%—-}l—dv
H TO o o o j
(68)

The auto-correlation function R(v) was computed by giving

a MAP command to convolve m(t) and m(-t). A single
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MAD program ("CROSO"-see Appendix D) was written to calculate
y(0) for a given value of Tor To change Tor the MAP command
"delete ro" was given; MAP would then ask for the value of

s when it tried to execute the program.

The results of these computations are plotted on the
next page for each of the three cases. Here the dispersed
y(0) is normalized with respect to the undispersed y(0); what
we are plotting in effect then is the parameter o from equation
30. Note that for all of the cases there is a sharp roll-off
beginning at B just less than one, or TO:fT. Here we see
another significance for the parameter Tye Just as the baua
length T is a measure of the signal bandwidth, so is Ty @
measure of the "bandwidth" of the medium when viewed as a
filter (Ref. 6, p. 18). Suppose T, Was fixed, and we tried
to transmit a signal with T = ro/2; i.e. twice the bandwidth
of the medium. The signal would disperse, resulting in its
bandwidth becoming smaller--to a rough approximation, no bigger
than the bandwidth of the medium. Hence, the dispersive
medium limits the bandwidth that our received signal can
have, and if the signal energy is constrained, limits the
best mean-square estimation error that we can hope to achieve,
no matter how we code the signal. This phenomenon of band-
width contraction by dispersion is well illustrated by the
photographs in the next section, in which the Fourier trans-
form of the dispersed y(1) is plotted for different Bg.

Another point about the plots of y(0) worth mentioning

is that the curve for the three-bit code falls off much more
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rapidly for large dispersion than does the one for the rectan-
gular pulse. The reason for this is that the auto-correlation
function for the three-bit code (photograph P8) has large
negative side peaks next to the main peak. When the dispersion
is large and all the peaks are smeared out, the smeared side
peaks add negatively to the smeared center peak, resulting in
a still smaller y(0). This, of course, does not occur with
the rectangular pulse whose auto-correlation function is simply
a single triangle. The effect does occur with the eleven-bit
code, but, as 1s evident from the plot, to a much lesser degree
since the side peaks are so much smaller than the main peak.

As far as the accuracy of these results is concerned, I
estimate that every point on the curves is accurate to well
within 2%. The calculation was simple, and a large number

of data points were taken for the integrations.

C. Calculation of y(1) = IRam(r)[.

Again, a MAD program was written to evaluate equation 68
for y(t), but this time for up to a few hundred values of t
(the number depending on the complexity of R(v) and the range
of y(t)). As before, a MAD program ("CRSCOR"--see Appendix D)
was written to calculate y(tr) for a given value of Toe Then
both y(t) and P(v) = |R(v)| were plotted on the same set of
axes for comparison. The Fourier transform of y(tr) was cal-
culated each time, and for some of the cases was plotted in
order to show the effect of bandwidth compression.

The photographed plots which follow are, I feel, an
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extremely important part of the results of this thesis. They
are probably about the best means possible of giving a quali-
tative impression of how the signal, or more specifically the
output of the correlation receiver, is affected by different
amounts of dispersion. As for accuracy, all the plots of

y (1) are good to within at least 5% at every point. The plots
of the Fourier transforms are accurate to within 10%.

There are a few observations that should be made with

regard to the plots. First, we can again see that o = T, or
B = 1, marks a kind of critical point in the degradation of
y(t). For example, in plots P10 and Pll we see that for

B = 1/2, y(t) deviates only slightly from P(v), but for g =1
the deviation is considerable. Also, we see that once 8 has
reached 5 (P7), estimating the arrival time (assuming we
could even detect the signal) with any meaningful resolution
becomes virtually impossible.

It is also interesting to note that for the 3 and 11
bit codes, when B = 5,y(r) no longer has its maximum at
T = 0 (plots P14, P24). Instead, the central peak is gone,
and larger side peaks appear. One result of this, of course,
is that a "catastrophic error" is made in estimating the
arrival time. Another result, though, is that the probability
of successfully detecting the signal is higher than what we
would expect by looking only at y(0). Compare plots P7
and P14. 1If we base our detection decision on some peak
output of the correlation receiver, no matter where that

peak occurs, then for the same amount of dispersion and
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Pl - Rectangular pulse. P2 - Corresponding
y(T) for 1, = T/4. spectrum, %, = T/4.

P3 - y(T) for 4= T/2, and P(v)

P4 - y(T) for T,

1]
3
v

and P(v).
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PS5 - y(T) for T, = 2T, P6 - Corresponding
and P(Vv) spectrum, T, = 2T

P7 - y(T) for T, = 5T, and P(V)
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P8 - R(v) for 3-bit P9 - Corresponding
Barker code. snectrum for P(v) = |R(v)|

P10 - y(T) for T, = T/2, and P(v)

P11 - y(T) for 7, = T, and P(v)
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Pl2 - y(T) for 7 = 2T, P13 - Corresponding
and P(v) spectrum, P = 2T

Pr4 - y(T) for T, = 5T, and P(v)
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P15 - X(v) for the P16 - Corresponding
11-bit Barker code spectrum for P(v) :\R(vﬂ

(Y) forT, = .85T, P18 - Corresponding
) spectrum, T, = 85T
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P19 - y(Y) for T, = T, P20 - Corresponding
ané 2(v) spectrum, T, = T

P21l - y(T) for T, = 1.5T, and P{V)

-63~



P22 - y(o) for T; = 2T, P23 - Corresponding
and P(v) spectrum, T, = 2T

P24 - y(T) for T, = 5T, P25 - Corresponding
and P(v) spectrum, T, = 5T
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same signal energy it would be easier to detect the 3-bit
code than the rectangular pulse.

This argument is certainly very qualitative, and the
resulting difference in detection probabilities is small. I
brought it out mainly to illustrate that for dispersive
channels coding can influence signal detection, and parameter
estimation may depend not only on the signal energy and band-
width, but on the exact form of the code. I will not pursue
this any longer at this time, but I would point out that

further work along these lines is in order.

D. Estimation - Calculation of €Z(1).

Once y(1) had been calculated, the mean-square estimation
error could then be computed using only MAP commands. The
Fourier transform of y(t) was computed (call it c(w), a new
function x(w) = w?2.c(w) was created, and this function was
then integrated. A normalized €Z(t) could then be obtained
by dividing the integral resulting from the undispersed case
by this integral. The results are plotted on the next page.

Again, these calculations are designed only to give a
rough idea of how a particular kind of estimation error is
affected by dispersion. In this sense their value is limited
and they shouldn't be taken too seriously. For example, note
that at B = 5 the error for the 3-bit code is considerably
smaller than that for the rectangular pulse. We would expect
this from comparing plots P7 and P14 in the previous section--

y(t) for the 3-bit code has a peak on each side, while y (1)
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for the rectangular pulse has no real peak. But while the
mean-square error about a side peak will be small for the
3-bit code, we are almost certain to make a catastrophic

error. This, of course, limits the meaningfulness of the

results in this section.
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V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The results of the previous chapter showed to a good degree
of accuracy how y(0) changes as a function of the dispersion
ratio B, what the entire correlator output y(t) looks like for
several different values of B, and to a lesser degree of
accuracy', how the mean-square estimation error changes as a
function of B. I would like to stress the "lesser degree of
accuracy in the curves relating eZ(t) to 8. One obvious
problem, of course, is the limited number of points on which
the curves are based. The accuracy of the points themselves
is also in doubt in some instances. In particular I guestion
the validity of the curve for the 11-bit code. I am at a
loss to account for the behavior of this curve, especially
when compared to the other two. Also the computations for
the 1l-bit code are most susceptible to machine round-off
error because of the larger number of data points required.

I suggest that the calculations that go from y(t) to eZ (1)
be re-done using more data points, and then checked by
hand.

By now the reader should be aware of some of the
undesirable features of the method used to calculate y(t).
The problem is not the limit of 1000 data points in MAP (this
can be overcome); the problem is that so many data points
are needed in the first place. This problem is inherent in

the fact that we are calculating y(t1) from equation 68. The
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sine and cosine terms in this equation oscillate more and more
rapidly as v gets larger (especially for small ro) so that

an enormous number of points must be used to evaluate the
integrals. And the magnitude of this problem grows exponen-
tially as the range of the auto-correlation function R(v) is
made longer. For example, to calculate y(tr) for a doubly-
folded 11l-bit Barker code (121 elementary pulses), with 8 =1,
we would need at least 20,000 data points to evaluate the
integrals. When we consider that each integral will have to
be evaluated at least 500 times (because of the larger range
of 1), we can begin to see what this means in terms of an
expenditure in computer time.

Appendix C contains a derivation for an alternative
expression for y(r) consisting of sums of Fresnel integrals.
These Fresnel integrals have been well tabulated (e.g. Ref. 1),
thus suggesting a way of calculating y(t) without performing
any integrations. The problem, of course, is the necessity
of feeding an entire table of Fresnel integrals into the com-
puter and allocating storage space for it. Once this has
been done, though, the stored table could be used to solve
any number of cases. For simple cases (including the 1l-bit
code) this really is not worth it and it is more efficient
to calculate y(t) from equation 68 as I have done. However,
for more complicated cases (doubly and triply-folded codes)
this alternative approach is much more reasonable, and in fact
is almost necessary. I would suggest, then, that a program be
written to calculate y(t) in this way.
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Another point that should be raised is the question of
how these results relate to the impending Sunblazer experiment.
In particular, what kind of numbers can we expect for the
dispersion time Ty for different points in the Sunblazer
trajectory. In Appendix AI have used the Allen-Baumbach
model for the extended corona to calculate a curve for TS
as a function of path offset for the proposed Sunblazer
orbit. With a signal baud length of 20 microseconds, the
curve tells us that B will not exceed unity until the path
offset becomes less than two solar radii. The reader should
realize, however, that the significance of this curve 1is
dubious. To begin with, the Allen-Baumbach model only gives
a very rough estimate (accurate to a factor of three or four)
of the average value of the coronal electron density. Solar
prominences and bursts can cause the electron density to
change by orders of magnitude over short lengths of time,
and this can occur frequently during periods of high solar
activity.

It is this fact that we cannot predict how much disper-
sion to expect ahead of time that puts a limit on the perfor-
mance of any communication scheme that we might design. That
is, if we knew exactly what TS would be at every point in the
satellite trajectory, then we could re-design our receiver so
as to again achieve optimum performarce. For example, we could

disperse the internally generated m(t) by an equivalent amount
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so that an auto-correlation function would again result (this
will give optimum detection performance, but the estimation
performance would still be somewhat degraded, though less so
than before). Or we could put a pre-filter in front of the
receiver that would "undisperse" the received waveform. If
this filter was reversible we could recalculate the decision
rules so as to again have optimum receiver performance. The
point is that such a scheme would not work because we would
not know how much dispersion to compensate for.

The fact that we are stuck with a dispersive channel
for which we cannot compensate suggests further work directed
towards tying dispersion into the communication problem. For
example, I have mentioned that Ty is a measure of an effec-
tive bandwidth of the medium, and if we try to transmit a
signal with bandwidth larger than this it will be dispersed
such that the resulting bandwidth will be smaller than the

medium's bandwidth. This in turn places a limit on the esti-

mation error than we can hope to achieve. I have not, however,

tried to analyze this in any exact, gquantitative terms, but
this should be done in the future. Another problem that
should be examined is to see how coding is related to dis-
persion. For example, is there a class of codes, or could
a class of codes be devised, that behaves particularly well
in a dispersive channel?

The result of folding a code on itself should also be

examined in the light of dispersion. As a step in this direc-

tion, I plan in the near future to calculate y(0), y(r), and
eZ(1) for at least the doubly-folded 5-bit Barker code.
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VI. APPENDICES

A. Calculation of 1 for the Sunblazer Trajectory.

We begin with the dispersion equation for the medium

équation 55):

p
- 2 -
then k" (w) = 1 (w2-w2) /2 _ w? (w2-w2) 3/2 (69)
c c p
1/2 _ 1 w,?
2_.2 1
(wé=-w?) - (1L + Egz)
3p_ 2
2¢.2_ 2y=3/2_ 1
w* (w wp) w(l+2—w—§—)
then, ) )
3w
" Sl oL 'p
k' lwy) = S G-+ 3 YN TIEL.
o o o o
w 2
= T Cw 3 (70)
o
wpz = 3.16-103n, n in electrons/m?

Take £ = 75 Mcps, w_ = 4.72-10°% rad/sec, then

" _ 1a-32
[k (wo)l = 1.0:10 ~“n (71)

The dispersion time 5 has been defined as:

T = Vﬂ¢"(wo) = Vn|k" (wo)lz (72)

o

where z is the path length. This expression must be integrated

over the propagation path (see figure 1):
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1/2
= Jn'10_32 n(r) dsz (73)

2 - g2 2 ds = pme—mm—
r s + p°, m

For a particular point in the trajectory, let R, be the distance

from the sun to the earth, and Rs from the sun to the satellite.

Then,
R
s s
n(r) -rdr n(r) -rdr (74)
nlr)ds = | 7,7 % | yr2 - o2
o] P

If we want to express r in solar radii, then we multiply each
integral by RO. We use the Allen-Baumbach moael for the extended

corona:

14 12
n(r) = lgg— + l%T— electrons/m?,

r in solar radii, r » 1.5 Ro

If we substitute this into equation 74 anda evaluate the integrals

we find that:

X
n(r)rdr _ 1y, VxZ-p? 3VxZ=p? 3 -1 x
R [,Eg—:—gy = 10 R 7577 Y awzov t BT tan (p) +
P
1 -1
12 . e
10*2 R -=cos ) (75)

Here x is either Re or Rs' To good approximation the first

three terms on the right can be ignored for p>6RO. We have

then,
R, Ryqy 1/2
c ={ re1073%R {J ' J (76)
o] O
P o



(2

oz

9% wy 12d sfop g 261 'N3S '¥3d
619162 N3993

ot ose
CTANELM AVO S N 1IN0 MO SHUYNM "
o
¥Ileca wn gy
Lo TN 20 v g 7y
OIS 40 JAVE UIVéd00 XVR ‘ AVY /842 00- (7
oy 008
3
()
)
308
5 Ko
o e
[
uz " y
os
" o1 ff&;.\\\ v 13 \ 4
o
0
AVG/5dY ¥5-
7 3
y/
5 8952 / —gg> eva2
/
]
oa Y o»Z
/ L Xl
AVO/842 L)
o~ 9\ Ava/a.08
0728886
”s R
sov A %
oS walsas vai 0i2
TVHL9 - 1S1Q NOINIHIY3d
28vSPE  SIXV HOMVW IN3S mL
hG) PNOD  MOINIINS o 3WIL
oe!

o4 QOIH3d IV3Y3QLS

38048d HVI0S 40 NOILOW 3AIlY13Y

100 HONIWV

~-74-



-
(Y

4=

™ sdar

™

)

ek,

[~

LO

(’)o:k\\;

-

\b

\a

hN

&

4

o

'

1
1

-

-75-~



Numerical values for T, were calculated using the data
for the proposed Sunblazer orbit that were computed by Charles
Peterson. A plot of T, @s a function of o, together with Peterson's
plot of the Sunblazer orbit appear on the preceding pages.

B. Attenuation Due to Collisions.

The coefficient of attenuation due to collisions follows
from a second-order model for the medium. The eguation of motion

for the electrons will now have a damping term added on to it:

Ee = mg% +av ‘ (77)

Here o = mV where v is the electron-ion collision frequency.

Since J = neyv,

dJ a. _ ne?
at tml = wm E (78)

Expressing E and J as complex exponentials for a plane wave,

and writing the wave equation:

E =i E e](wt—kz) (79a)
- —X (@]

g = ig el vtk (79b)
32E 37 32E

5zZ = Mo 3t THofo3EZ (80)

Finally, we make the approximation of very small attenuation,
namely that v/w <<<1l.

Now substituting equations 79 into equation 78 gives:

2
= —2C _E (81)
o] o + Jjw O
and putting (79) into (80) gives:
) = _ 2 :
k E HoEow® B + Juudg (82)

Combining (8l1) and (82), we have:
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. 2 u ne?mw? Ju ne?qw
k= [ez - 32 ARl (83)
C a? + wem a? + w?m?

We can then manipulate this expression and make an approxima-
. tion for the square root. The coefficient of attenuation, «,
is just the negative of the imaginary part of k. Omitting

the algebra, we have:

Kk = % uoneZCa[(a2 + mlp?2 - uonezmcz)(a2 + mzwz)]-l/Z
2 2,2
aw L 2 w_“a
= __R_ o a _ 2 _ 2 —1/2
Tnce (wZmF t %nZ wZmz t v s ) (84)
Taking v = 10”7 cps, w = 108cps, we see that
2.2 2
2 y 4 w_“o w
& . . 8 -V . . p - _P 2 -
mz = 0F grmw = gz ¢ 07 and —grgz = gy vt ot O
We have, then,
.= ow 2 . ]_
T 2mce  Ywl-w_?
P
(w_/w)?
v ] (85)

T 2¢ T /1I(w Jw)?
P
An alternative derivation is outlined in Ref. 3.

C. Another Method of Calculating y(t) for Binary Signals.

Binary Signals

If m(t) is a binary waveform, the auto-correlation function

- can be expressed as:
N-1 (k+1)T

: R (1) = (agr + by) (86)
==N kT
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(k+1)T
Here N is the number of binary bits, and (akr+bk)

kT
is a line segment defined over the interval (k+1)T < 1<kT. The
three-bit Barker code is shown as an example in figure 12a.

[y
We want to evaluate an integral of the form:

2
u
du

LT
J R (t-1 u)e_jf
mm (o]

Using the same a,'s and b, 's we can write R__ (1-1 _u) as a
k k mm o

function of u (figure 12b):

- T+ (k+1)T
_ _ T
Rmm(r—rou) = (akTou+bk akr) o (87)
k=-N T+kT
u=
Yo

Then,
J Rmm(r—rou)e 2% du =
e 1
k+1 k+1
N-1 ) N-1
-jzus | _ Jjsu
E___ akTo ue -2 du + E (bk akT) e “2° du
k:" k=-—N
1
k lk
(88)
where
T+kT
1k T T
o
lk+l
ue_jfuzdu =1 [cos = 12 - cos =12] + L[sinllz -sintl, 2]
m 2 “k+1 27k ™ 27 k+1 27k
1y
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m(t) 4
1
T
-11
0
»
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lk+1
- 'lr.u
and )

Ty

2
du = F* (1 - F*(lk)

k+l)

[C(1,1)-C(A)1-[S(1,, )-S(1)]

Here C(x) and S(x) are the Fresnel cosine and sine integrals:

X X
C(x) = J cos %g2dg; S(x) = J sing-gng
(@) O

Rewriting equation 67:

=S oo 1
y(1) =/5 Re J Rmm(T—TOU)e 2 du + | Im J Rmm(T—TOu)e 2 du

-00 oo

We see, then, that

N-1 2 N-1 2 )1/2
_ 1 § 5
y (1) =/2 Pk(’r) + Qk(T) (89)
k=-N k=-N
where
ko m T,
_ _K O s T22 _ainl - . oy -
Pk = - [51n21k+l 51n21k] + (bk akT)[C(lk+l) C(lk)] (90a)
and
k"o T2 o
Qk = [cosilk+l—cosflk]_(bk_akT)[S(1k+l)—S(lk)] (90b)

Since C(x) and S(x)are well tabulated, equations 89 and 90
provide a way of calculating y{(t) without performing any

integrations. The accuracy of the calculation will depend
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on the size of the Fresnel integral table that is fed into

the computer, but once the table is fed in, the same accuracy
will be attained for a binary signal of any length. This method
is particularly advantageous, then, for analyzing longer and

more complex signals.

D. Computer Programs

The next page contains the MAD programs to calculate y(0)

and y(t). The page following contains a sample command-response

exchange in MAP for the calculation of eZ (1)

.
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